
Regression Functions Supported by the e�ects Package

And How to Support Other Classes of Regression Models

John Fox and Sanford Weisberg

2022-07-07

1 Introduction

E�ect plots, as implemented in the e�ects package, represent the �e�ects� (in the not necessarily

causal sense of �partial relationship�) of one or more predictors on a response variable, in regression

models in which the response depends on a linear predictor�a linear combination of main e�ects

and interactions among the predictors (Fox and Weisberg, 2019, Sec. 4.6.3). Effect() is the basic

generic function in the e�ects package; Effect() is called directly or indirectly by several other

functions in the package, such as predictorEffects() and allEffects().

Table 1 provides a list of regression modeling functions in R that can be used with the e�ects

package. This list, which is almost surely incomplete, includes functions that are directly supported

by Effect() methods supplied by the e�ects package, by Effect() methods supplied by other

CRAN packages, or by the default Effect() method, which works with many classes of regression

models.

The most basic type of model for which Effect() is appropriate is a standard linear model �t

by the lm() function; for example:

library("effects")

Prestige$type <- factor(Prestige$type, c("bc", "wc", "prof")) # reorder levels

g1 <- lm(prestige ~ education + type + education:type, data = Prestige)

equivalent to lm(prestige ~ education*type, data = Prestige)

plot(predictorEffects(g1), lines=list(multiline=TRUE))

education predictor effect plot

education

pr
es

tig
e

20

30

40

50

60

70

 8 10 12 14 16

type
bc
wc
prof

type predictor effect plot

type

pr
es

tig
e

20

30

40

50

60

70

bc wc prof

education
6.4
8.8
11

14
16

1

Table 1: R regression functions known to be compatible with the Effect() function. The name

before the double-colon is the package that includes the function; for example stats::lm() means

that lm() is in the stats package. In some cases, Effect() may support only a subset of regression

models �t by a particular function. E�ects for mixed-e�ects models represent the �xed-e�ects part

of the model.

Function Comments

glm-type models

stats::lm() Standard linear regression models �t by least-squares or

weighted least-squares. A multivariate response, generating

a multivariate linear model, is permitted, and in this case ef-

fects are computed for each response separately.

stats::glm() Generalized linear models.

nlme::lme() Linear mixed-e�ects models.

nlme::gls() Linear models �t by generalized least squares.

lmer::lmer() Linear mixed-e�ects models.

lmer::glmer() Generalized linear mixed-e�ects models.

survey::svyglm() Generalized linear models for complex survey designs.

MASS::rlm() Linear regression models estimated by robust M or MM re-

gression.

MASS::glmmPQL() Generalized linear mixed-e�ects models via partial quadratic

likelihood.

robustlmm::rlmer() Robust linear mixed-e�ects models.

betareg::betareg() Beta regression models for rates and proportions.

ivreg::ivreg() Linear regression models estimated by instrumental variables

(2SLS regression).

glmmTMB::glmmTMB() Generalized linear mixed-e�ects regression models (similar to

lmer::glmer() but accommodating a broader selection of

models).

multinom-type models

nnet::multinom() Multinomial logistic-regression models. If the response has

K categories, the response for nnet::multinom() can be a

factor with K levels or a matrix with K columns, which will

be interpreted as counts for each of K categories. E�ects

plots require the response to be a factor, not a matrix.

poLCA::poLCA() Latent class analysis regression models for polytomous out-

comes. Latent class analysis has a similar structure to multi-

nomial regression, except that class membership of observa-

tions is unobserved but estimated in the analysis.

polr-type models

MASS:polr() Ordinal logistic (proportional-odds) and probit regression

models.

ordinal::clm() Cumulative-link regression models (similar to, but more ex-

tensive than, polr()).

ordinal::clm2() Updated version of ordinal::clm().

ordinal::clmm() Cumulative-link regression models with random e�ects.

2

In this example the response prestige is modeled as a linear function of years of education, the

factor type, with levels blue collar ("bc"), white collar ("wc"), and professional ("prof"), and their

interaction. Because of the interaction, the estimated partial relationship of prestige to education

(depicted in the predictor e�ect plot for education, at the left) is di�erent for each level of type,

and the partial relationship of prestige to type (depicted in the predictor e�ect plot for type, at

the right) varies with the value education.

A linear mixed-e�ects model is a more complicated regression model, �t, for example, by the

lmer() function in the lme4 package (Bates et al., 2015):

data(Orthodont, package="nlme")

g2 <- lme4::lmer(distance ~ age + Sex + (1 | Subject), data = Orthodont)

summary(g2)

Linear mixed model fit by REML ['lmerMod']

Formula: distance ~ age + Sex + (1 | Subject)

Data: Orthodont

REML criterion at convergence: 437.5

Scaled residuals:

Min 1Q Median 3Q Max

-3.7489 -0.5503 -0.0252 0.4534 3.6575

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.267 1.807

Residual 2.049 1.432

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 17.70671 0.83392 21.233

age 0.66019 0.06161 10.716

SexFemale -2.32102 0.76142 -3.048

Correlation of Fixed Effects:

(Intr) age

age -0.813

SexFemale -0.372 0.000

This model has a �xed e�ect part, with response distance and predictors age and Sex. The random

intercept (represented by 1) varies by Subject. E�ect plots for mixed-e�ects models are based only

on the estimated �xed-e�ects in the model:

plot(predictorEffects(g2))

3

age predictor effect plot

age

di
st

an
ce

22

23

24

25

26

 8 9 10 11 12 13 14

Sex predictor effect plot

Sex

di
st

an
ce

22

23

24

25

26

Male Female

2 Basic Types of Regression Models in the e�ects Package

The Effects() function supports three basic types of regression models:

� The preceding examples that use the lm() and lmer() functions are examples of glm-type

models, which express, via a link function, the dependence of a discrete or continuous numeric

response or of a binary response on a set of main e�ects and interactions among �xed-e�ect

predictors comprising a linear predictor. The glm() function is the prototype for this kind

of model. As shown in Table 1, most of the regression functions currently supported by the

e�ects package are of this type.

� multinom-type models are multinomial regression models that arise when the response is an

unordered multi-category variable, also modeled, via a suitable multivariate link function, as a

linear function of �xed-e�ect main e�ects and interactions. The prototype for multinom-type

models is the multinom() function in the nnet package (Venables and Ripley, 2002).

� polr-type models (i.e., ordinal regression models) are used for an ordered polytomous response

variable. The prototype for polr-type models is the polr() function in the MASS package

(Venables and Ripley, 2002).

3 Supporting Speci�c Regression Functions

To support a speci�c class of regression models, say of class "foo" produced by the function foo(),

one could write a method Effect.foo() for the S3 generic Effect() function. That approach is

generally undesirable, for two reasons: (1) writing an Effect()method from scratch is a complicated

endeavor; (2) the resulting object may not work properly with other functions in the e�ects package,

such as plot() methods.

The e�ects package de�nes and exports several methods for the Effect() function, including

a default method, and three speci�c methods corresponding to the three types of regression models

introduced in the preceding section: Effect.lm() (which is also inherited by models of class "glm"),

Effect.multinom(), and Effect.polr(). Moreover, Effect.default() works by setting up a call

4

to one of the three speci�c Effect() methods.1

The three basic Effect() methods collect information from the regression model of interest via

a suitable method for the generic effects::effSources() function, and then use that information

to compute e�ects and their standard errors. The required information is summarized in Table 2.

The default effSources() method simply returns NULL, which corresponds to selecting all of

the defaults in Table 2. If that doesn't work, it usually su�ces to provide a suitable effSources()

method. We illustrate by a few examples.

3.1 Examples

The following examples, with the exception of the last, are drawn directly from the e�ects package.

3.1.1 glmmPQL()

Objects of class "glmmPQL", produced by MASS::glmmPQL() do not respond to the generic family()

function, but the name of the family can be obtained from the call; thus:

effSources.glmmPQL <- function(mod) {

list(family = mod$family)

}

3.1.2 gls()

The weights argument has di�erent meaning for gls() in the nlme package (Pinheiro et al., 2018)

and for the standard R glm() function, and consequently the call must be modi�ed to set weights

to NULL:

effSources.gls <- function(mod){

cl <- mod$call

cl$weights <- NULL

list(call = cl)

}

3.1.3 betareg()

The betareg function in the betareg package (Grün et al., 2012) �ts response data similar to a bi-

nomial regression but with beta errors. Adapting these models for use with Effect() is considerably

more complex than the two previous examples:

effSources.gls <- function(mod){

coef <- mod$coefficients$mean

vco <- vcov(mod)[1:length(coef), 1:length(coef)]

betareg uses beta errors with mean link given in mod$link$mean.

Construct a family based on the binomial() family

fam <- binomial(link=mod$link$mean)

1There are, as well, two additional speci�c Effect() methods provided by the e�ects package: Effect.merMod()
for models produced by the lmer() and glmer() functions in the lme4 package; and Effect.svyglm() for models
produced by the svyglm() function in the survey package (Lumley, 2004). To see the code for these methods,
enter the commands getAnywhere("Effect.merMod") and getAnywhere("Effect.svyglm"), after loading the e�ects
package.

5

Table 2: Values supplied by effSources() methods. In the table, the regression model object is

called m. For functions cited in the insight package see Lüdecke et al. (2019).

Argument Description

type The type of the regression model: one of "glm" (the default if type

isn't supplied), "multinom", or "polr".

call The call that created the regression model, which is generally re-

turned by either m$call or m@call or insight::get_call(m). The

call is used to �nd the usual data and subset arguments that Ef-

fect() needs to perform the computation. See the discussion of

nlme:::gls() below for an example where the call must be modi-

�ed.

formula The formula for the �xed-e�ects linear predictor,

which is often returned by stats::formula(m) or in-

sight::find_formula(m)$conditional.

family Many glm-type models include a family, with an error distribu-

tion and a link function. These are often returned by the default

stats::family(m) or insight::get_family(m).

coefficients The vector of �xed-e�ect parameter estimates, often returned by

coef(m). Alternatively b <- insight::get_parameters(m) returns

the coe�cient estimates as a two-column matrix with parameter

names in the �rst column, so stats:setNames(b[,2], b[,1]) re-

turns the estimates as a vector. For a polr-type model, coe�cients

should return the regression coe�cients excluding the thresholds.

vcov The estimated covariance matrix of the �xed-e�ect estimates, often

given by stats::vcov(m) or insight::get_varcov(m). For a polr-

type model, the covariance matrix should include both the regression

coe�cients and the thresholds, with the regression coe�cients pre-

ceding the thresholds.

zeta The vector of estimated thresholds for a polr-type model, one fewer

than the number of levels of the response. The default for a polr-

type model is zeta = m$zeta.

method For a polr-type model, the name of a link supported by the

MASS::polr() function: one of "logistic", "probit", "loglog",

"cloglog", or "cauchit". The default for a polr-type model is

method = "logistic".

6

adjust the variance function to account for beta variance

fam$variance <- function(mu)

f0 <- function(mu, eta) (1-mu)*mu/(1+eta)

do.call("f0", list(mu, mod$coefficient$precision))

adjust initialize

fam$initialize <- expression(mustart <- y)

collect arguments

args <- list(

call = mod$call,

formula = formula(mod),

family=fam,

coefficients = coef,

vcov = vco)

args

}

3.1.4 clm2()

The clm2() function in the ordinal package (Christensen, 2015) �ts ordinal regression models, and

so the aim is to create polr-type e�ects:

effSources.clm2 <- function(mod){

if (!requireNamespace("MASS", quietly=TRUE))

stop("MASS package is required")

polr.methods <- c("logistic", "probit", "loglog",

"cloglog", "cauchit")

method <- mod$link

if(!(method %in% polr.methods))

stop("'link' must be a 'method' supported by polr; see help(polr)")

if(is.null(mod$Hessian)){

message("Re-fitting to get Hessian")

mod <- update(mod, Hess=TRUE)

}

if(mod$threshold != "flexible")

stop("Effects only supports the flexible threshold")

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta+1):(numTheta + numBeta), 1:(numTheta))

list(

type = "polr",

formula = mod$call$location,

coefficients = mod$beta,

zeta = mod$Theta,

method=method,

vcov = as.matrix(vcov(mod)[or, or]))

}

7

3.1.5 ivreg::ivreg()

Sometimes it doesn't su�ce to de�ne an appropriate effSources() method, but it is still possible to

avoid writing a detailed Effect() method. We use the ivreg() function (for instrumental-variables

regression) in the ivreg package (Fox et al., 2021) as an example; that package de�nes the following

Effect.ivreg() method:

Effect.ivreg <- function (focal.predictors, mod, ...) {

mod$contrasts <- mod$contrasts$regressors

NextMethod()

}

Here it is su�cient to set the contrasts element of the model object to conform to the way it

is de�ned in "lm" objects. That works because "ivreg" objects inherit from class lm, and thus

Effect.lm() is called by NextMethod().

References

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). Fitting linear mixed-e�ects models using

lme4. Journal of Statistical Software 67 (1), 1�48.

Christensen, R. H. B. (2015). ordinal�Regression Models for Ordinal Data. R package version

2015.6-28.

Fox, J., C. Kleiber, and A. Zeileis (2021). ivreg: Instrumental-Variables Regression by '2SLS',

'2SM', or '2SMM', with Diagnostics. R package version 0.6-1.

Fox, J. and S. Weisberg (2019). An R Companion to Applied Regression (3nd ed.). Thousand Oaks

CA: Sage.

Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in R: Shaken, stirred, mixed,

and partitioned. Journal of Statistical Software 48 (11), 1�25.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software 9 (1), 1�19.

R package version 2.2.

Lüdecke, D., P. Waggoner, and D. Makowski (2019). insight: A uni�ed interface to access informa-

tion from model objects in R. Journal of Open Source Software 4 (38), 1412.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2018). nlme: Linear and Nonlinear

Mixed E�ects Models. R package version 3.1-137.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (4th ed.). New York:

Springer-Verlag.

8

	Introduction
	Basic Types of Regression Models in the effects Package
	Supporting Specific Regression Functions
	Examples
	glmmPQL()
	gls()
	betareg()
	clm2()
	ivreg::ivreg()

