Title: | Effect Displays for Linear, Generalized Linear, and Other Models |
---|---|
Description: | Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors. |
Authors: | John Fox [aut, cre], Sanford Weisberg [aut], Brad Price [aut], Michael Friendly [aut], Jangman Hong [aut], Robert Andersen [ctb], David Firth [ctb], Steve Taylor [ctb], R Core Team [ctb] |
Maintainer: | John Fox <[email protected]> |
License: | GPL (>= 2) |
Version: | 4.2-2 |
Built: | 2024-11-18 05:11:18 UTC |
Source: | https://github.com/cran/effects |
Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors.
Package: | effects |
Version: | 4.2-2 |
Date: | 2022-02-16 |
Depends: | R (>= 3.5.0), carData |
Suggests: | pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4, robustlmm |
Imports: | lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability, insight |
LazyLoad: | yes |
License: | GPL (>= 2) |
URL: | https://www.r-project.org, https://socialsciences.mcmaster.ca/jfox/ |
This package creates effect displays for various kinds of models, as partly explained in the references.
Typical usage is plot(allEffects(model))
or plot(predictorEffects(model))
,
where model
is an appropriate fitted-model object.
Additional arguments to allEffects
, predictorEffects
and plot
can be used to customize the resulting
displays. The function effect
can be employed to produce an effect display for a
particular term in the model, or to which terms in the model are marginal. The function predictorEffect
can be used
to construct an effect display for a particularly predictor. The function Effect
may similarly be used to produce an effect display for any combination of predictors. In any of the cases, use plot
to graph the resulting effect object. For linear and generalized linear models it is also possible to plot
partial residuals to obtain (multidimensional) component+residual plots.
See ?effect
, ?Effect
, ?predictorEffect
, and ?plot.eff
for details.
John Fox, Sanford Weisberg, Brad Price, Michael Friendly, Jangman Hong, Robert Anderson, David Firth, Steve Taylor, and the R Core Team.
Maintainer: John Fox <[email protected]>
Fox, J. and S. Weisberg (2019) An R Companion to Applied Regression, Third Edition Sage Publications.
Fox, J. (1987) Effect displays for generalized linear models. Sociological Methodology 17, 347–361.
Fox, J. (2003) Effect displays in R for generalised linear models. Journal of Statistical Software 8:15, 1–27, doi:10.18637/jss.v008.i15.
Fox, J. and R. Andersen (2006) Effect displays for multinomial and proportional-odds logit models. Sociological Methodology 36, 225–255.
Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package. Journal of Statistical Software 32:1, 1–24, doi:10.18637/jss.v032.i01.
Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models: Effect Plots with Partial Residuals. Journal of Statistical Software 87:9, 1–27, doi:10.18637/jss.v087.i09.
This function uses the get_parameters
function in the insight
package to get a vector of regression coefficients for use in the effects package. It converts the two-column data.frame
returned by get_parameters
to a vector of named elements.
effCoef(mod, ...) ## Default S3 method: effCoef(mod, ...)
effCoef(mod, ...) ## Default S3 method: effCoef(mod, ...)
mod |
A model object with a linear predictor representing fixed effects. |
... |
Additional parameter passed to |
The get_parameters
function can be used to retrieve the coefficient estimates corresponding to a linear predictor for many regression models, and return them as a two column data.frame
, with regressor names in the first column and estimates in the second column. This function converts this output to a named vector as is expected by the effects
package.
A vector of coefficient estimates
Sanford Weisberg [email protected]
get_parameters
, and vignette Regression Models Supported by the effects Package
m1 <- lm(prestige ~ type + income + education, Duncan) effCoef(m1)
m1 <- lm(prestige ~ type + income + education, Duncan) effCoef(m1)
Effect
and effect
construct an "eff"
object for a term (usually a high-order term) in a regression that models a response as a linear function of main effects and interactions of factors and covariates. These models include, among others, linear models (fit by lm
and gls
), and generalized linear models (fit by glm
), for which an "eff"
object is created, and multinomial and proportional-odds logit models (fit respectively by multinom
and polr
), for which an "effpoly"
object is created. The computed effect absorbs the lower-order terms marginal to the term in question, and averages over other terms in the model. For multivariate linear models (of class "mlm"
, fit by lm
), the functions construct a list of "eff"
objects, separately for the various response variables in the model.
effect
builds the required object by specifying explicitly a focal term like "a:b"
for an a
by b
interaction. Effect
in contrast specifies the predictors in a term, for example c("a", "b")
, rather than the term itself. Effect
is consequently more flexible and robust than effect
, and will succeed with some models for which effect
fails. The effect
function works by constructing a call to Effect
and continues to be included in effects so older code that uses it will not break.
The Effect
and effect
functions can also be used with many other models; see Effect.default
and the Regression Models Supported by the effects Package vignette.
allEffects
identifies all of the high-order terms in a model and returns a list of "eff"
or "effpoly"
objects (i.e., an object of class "efflist"
).
For information on computing and displaying predictor effects, see predictorEffect
and plot.predictoreff
.
For further information about plotting effects, see plot.eff
.
effect(term, mod, vcov.=vcov, ...) ## Default S3 method: effect(term, mod, vcov.=vcov, ...) Effect(focal.predictors, mod, ...) ## S3 method for class 'lm' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals, transformation) ## S3 method for class 'multinom' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical) ## S3 method for class 'polr' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical) ## S3 method for class 'svyglm' Effect(focal.predictors, mod, fixed.predictors, ...) ## S3 method for class 'merMod' Effect(focal.predictors, mod, ..., KR=FALSE) ## S3 method for class 'poLCA' Effect(focal.predictors, mod, ...) ## S3 method for class 'mlm' Effect(focal.predictors, mod, response, ...) allEffects(mod, ...) ## Default S3 method: allEffects(mod, ...)
effect(term, mod, vcov.=vcov, ...) ## Default S3 method: effect(term, mod, vcov.=vcov, ...) Effect(focal.predictors, mod, ...) ## S3 method for class 'lm' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals, transformation) ## S3 method for class 'multinom' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical) ## S3 method for class 'polr' Effect(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical) ## S3 method for class 'svyglm' Effect(focal.predictors, mod, fixed.predictors, ...) ## S3 method for class 'merMod' Effect(focal.predictors, mod, ..., KR=FALSE) ## S3 method for class 'poLCA' Effect(focal.predictors, mod, ...) ## S3 method for class 'mlm' Effect(focal.predictors, mod, response, ...) allEffects(mod, ...) ## Default S3 method: allEffects(mod, ...)
term |
the quoted name of a term, usually, but not necessarily, a high-order term in the model. The term must be given exactly as it appears in the printed model, although either colons ( |
focal.predictors |
a character vector of one or more predictors in the model in any order. |
mod |
a regression model object. If no specific method exists for the class of |
xlevels |
this argument is used to set the number of levels for any focal numeric predictor (that is predictors that are not factors, character variables, or logical variables, all of which are treated as factors). If More generally, If partial residuals are computed, then the focal predictor that is to appear on the horizontal axis of an effect plot is evaluated at 100 equally spaced values along its full range, and, by default, other numeric predictors are evaluated at the quantiles specified in the |
fixed.predictors |
an optional list of specifications affecting the values at which fixed predictors for an effect are set, potentially including:
|
vcov. |
Effect methods generally use the matrix returned by |
se |
|
residuals |
if |
quantiles |
quantiles at which to evaluate numeric focal predictors not on the horizontal axis, used only when partial residuals are displayed; superseded if the |
x.var |
the (quoted) name or index of the numeric predictor to define the horizontal axis of an effect plot for a linear or generalized linear model; the default is |
latent |
if |
x |
an object of class |
KR |
if |
response |
for an |
... |
arguments to be passed down. |
confint , confidence.level , given.values , typical , offset , partial.residuals , transformation
|
legacy arguments retained for backwards compatibility; if present, these arguments take precedence over the |
Normally, the functions to be used directly are allEffects
, to return a list of high-order effects, and the generic plot
function to plot the effects (see plot.efflist
, plot.eff
, and plot.effpoly
). Alternatively, Effect
can be used to vary a subset of predictors over their ranges, while other predictors are held to typical values.
Plotting methods for effect objects call the xyplot
(or in some cases, the densityplot
) function in the lattice package. Effects may also be printed (implicitly or explicitly via print
) or summarized (using summary
) (see print.efflist
, summary.efflist
, print.eff
, summary.eff
, print.effpoly
, and summary.effpoly
).
If asked, the effect
function will compute effects for terms that have higher-order relatives in the model, averaging over those terms (which rarely makes sense), or for terms that do not appear in the model but are higher-order relatives of terms that do. For example, for the model Y ~ A*B + A*C + B*C
, one could compute the effect corresponding to the absent term A:B:C
, which absorbs the constant, the A
, B
, and C
main effects, and the three two-way interactions. In either of these cases, a warning is printed.
See predictorEffects
for an alternative paradigm for defining effects.
For "lm"
, "glm"
, "svyglm"
, "lmerMod"
, "glmerMod"
, and "lme"
, model objects, effect
and Effect
return an "eff"
object, and for "multinom"
, "polr"
, "clm"
, "clmm"
, and "clm2"
models, an "effpoly"
object, with the components listed below. For an "mlm"
object with one response specified, an "eff"
object is returned, otherwise an "efflist"
object is returned, containing one "eff"
object for each response
.
term |
the term to which the effect pertains. |
formula |
the complete model formula. |
response |
a character string giving the name of the response variable. |
y.levels |
(for |
variables |
a list with information about each predictor, including its name, whether it is a factor, and its levels or values. |
fit |
(for |
prob |
(for |
logit |
(for |
x |
a data frame, the columns of which are the predictors in the effect, and the rows of which give all combinations of values of these predictors. |
model.matrix |
the model matrix from which the effect was calculated. |
data |
a data frame with the data on which the fitted model was based. |
discrepancy |
the percentage discrepancy for the ‘safe’ predictions of the original fit; should be very close to 0. Note: except for |
offset |
value to which the offset is fixed; |
model |
(for |
vcov |
(for |
se |
(for |
se.prob , se.logit
|
(for |
lower , upper
|
(for |
lower.prob , upper.prob , lower.logit , upper.logit
|
(for |
confidence.level |
for the confidence limits. |
transformation |
(for |
residuals |
(working) residuals for linear or generalized linear models (and some similar models), to be used by |
x.var |
the name of the predictor to appear on the horizontal axis of an effect plot made from the returned object; will usually be |
family |
for a |
link |
the value returned by |
allEffects
returns an "efflist"
object, a list of "eff"
or "effpoly"
objects corresponding to the high-order terms of the model.
If mod
is of class "poLCA"
(from the poLCA package), representing a polytomous latent class model, effects are computed for the predictors given the estimated latent classes. The result is of class "eff"
if the latent class model has 2 categories and of class "effpoly"
with more than 2 categories.
The Effect
function handles factors and covariates differently, and is likely to be confused if one is changed to the other in a model formula. Consequently, formulas that include calls to as.factor
, factor
, or numeric
(as, e.g., in y ~ as.factor(income)
) will cause errors. Instead, create the modified variables outside of the model formula (e.g., fincome <- as.factor(income)
) and use these in the model formula.
The effect
function doesn't work with factors that have colons in level names (e.g., "level:A"
); the effect
function will confuse the colons with interactions; rename levels to remove or replace the colons (e.g., "level.A"
). Level names with colons are perfectly fine for use with Effect
.
The functions in the effects package work properly with predictors that are numeric variables, factors, character variables, or logical variables; consequently, e.g., convert dates to numeric. Character predictors and logical predictors are treated as factors, the latter with "levels" "FALSE"
and "TRUE"
.
Empty cells in crossed-factors are now permitted for "lm"
, "glm"
, and "multinom"
models. For "multinom"
models with two or more crossed factors with an empty cell, stacked area plots apparently do not work because of a bug in the barchart
function in the lattice package. However, the default line plots do work.
Offsets in linear and generalized linear models are supported, as are offsets in mixed models fit by lmer
or glmer
, but must be supplied through the offset
argument to lm
, glm
, lmer
or glmer
; offsets supplied via calls to the offset
function on the right-hand side of the model formula are not supported.
Fitting ordinal mixed models using clmm
or clmm2
permits many options, including a variety of link functions, scale functions, nominal regressors, and various methods for setting thresholds. Effects are currently generated only for the default values of the arguments scale
, nominal
, link
, and threshold
, which is equivalent to fitting an ordinal-response mixed-effects model with a logit link. Effect
can also be used with objects created by clm
or clm2
, fitting ordinal response models with the same links permitted by polr
in the MASS package, with no random effects, and with results similar to those from polr
.
Calling any of these functions from within a user-written function may result in errors due to R's scoping rules. See the vignette embedding.pdf
in the car package for a solution to this problem.
John Fox [email protected], Sanford Weisberg [email protected] and Jangman Hong.
Fox, J. (1987). Effect displays for generalized linear models. Sociological Methodology 17, 347–361.
Fox, J. (2003) Effect displays in R for generalised linear models. Journal of Statistical Software 8:15, 1–27, doi:10.18637/jss.v008.i15.
Fox, J. and R. Andersen (2006). Effect displays for multinomial and proportional-odds logit models. Sociological Methodology 36, 225–255.
Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models:? Extensions to the effects package. Journal of Statistical Software 32:1, 1–24, doi:10.18637/jss.v032.i01.
Fox, J. and S. Weisberg (2019). An R Companion to Applied Regression, third edition, Thousand Oaks: Sage.
Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots with Partial Residuals. Journal of Statistical Software 87:9, 1–27, doi:10.18637/jss.v087.i09.
Hastie, T. J. (1992). Generalized additive models. In Chambers, J. M., and Hastie, T. J. (eds.) Statistical Models in S, Wadsworth.
Weisberg, S. (2014). Applied Linear Regression, 4th edition, Wiley, http://z.umn.edu/alr4ed.
LegacyArguments
. For information on printing, summarizing, and plotting effects:
print.eff
, summary.eff
, plot.eff
,
print.summary.eff
,
print.effpoly
, summary.effpoly
, plot.effpoly
,
print.efflist
, summary.efflist
,
plot.efflist
, xyplot
,
densityplot
, and the Effect Displays with Partial Residuals and Regression Models Supported by the effects Package vignettes.
mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))) eff.cowles as.data.frame(eff.cowles[[2]]) # the following are equivalent: eff.ne <- effect("neuroticism*extraversion", mod.cowles) Eff.ne <- Effect(c("neuroticism", "extraversion"), mod.cowles) all.equal(eff.ne$fit, Eff.ne$fit) plot(eff.cowles, 'sex', axes=list(y=list(lab="Prob(Volunteer)"))) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)"))) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) # a nested model: mod <- lm(log(prestige) ~ income:type + education, data=Prestige) plot(Effect(c("income", "type"), mod, transformation=list(link=log, inverse=exp)), axes=list(y=list(lab="prestige"))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) plot(Effect(c("Europe", "political.knowledge"), mod.beps, xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) plot(effect("Europe*political.knowledge", mod.beps, # equivalent xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) plot(Effect(c("country", "age"), mod.wvs), axes=list(y=list(style="stacked"))) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked"))) # equivalent plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs, se=list(type="scheffe"))) # Scheffe-type confidence envelopes } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres, xlevels=50) plot(eff.pres) plot(eff.pres[1], axes=list(x=list(income=list( transform=list(trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)) )))) # linear model with log-response and log-predictor # to illustrate transforming axes and setting tick labels mod.pres1 <- lm(log(prestige) ~ log(income) + poly(education, 3) + poly(women, 2), data=Prestige) # effect of the log-predictor eff.log <- Effect("income", mod.pres1) # effect of the log-predictor transformed to the arithmetic scale eff.trans <- Effect("income", mod.pres1, transformation=list(link=log, inverse=exp)) #variations: # y-axis: scale is log, tick labels are log # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.log) # y-axis: scale is log, tick labels are log # x-axis: scale is log, tick labels are arithmetic plot(eff.log, axes=list(x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(5000, 10000, 20000)), lab="income, log-scale")))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(lab="prestige"))) # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(type="response", lab="prestige"))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(lab="prestige, log-scale")), main="Both response and X in log-scale") # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list( income=list(transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(type="response", lab="prestige"))) if (require(nlme)){ # for gls() mod.hart <- gls(fconvict ~ mconvict + tfr + partic + degrees, data=Hartnagel, correlation=corARMA(p=2, q=0), method="ML") plot(allEffects(mod.hart)) detach(package:nlme) } if (require(lme4)){ data(cake, package="lme4") fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML = FALSE) plot(Effect(c("recipe", "temperature"), fm1)) plot(effect("recipe:temperature", fm1), axes=list(grid=TRUE)) # equivalent (plus grid) if (any(grepl("pbkrtest", search()))) detach(package:pbkrtest) detach(package:lme4) } if (require(nlme) && length(find.package("lme4", quiet=TRUE)) > 0){ data(cake, package="lme4") cake$rep <- with(cake, paste( as.character(recipe), as.character(replicate), sep="")) fm2 <- lme(angle ~ recipe * temperature, data=cake, random = ~ 1 | rep, method="ML") plot(Effect(c("recipe", "temperature"), fm2)) plot(effect("recipe:temperature", fm2), axes=list(grid=TRUE)) # equivalent (plus grid) } detach(package:nlme) if (require(poLCA)){ data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE nes2a <- poLCA(f2a,election,nclass=3,nrep=5) plot(Effect(c("PARTY", "AGE"), nes2a), axes=list(y=list(style="stacked"))) } # mlm example if (require(heplots)) { data(NLSY, package="heplots") mod <- lm(cbind(read,math) ~ income+educ, data=NLSY) eff.inc <- Effect("income", mod) plot(eff.inc) eff.edu <- Effect("educ", mod) plot(eff.edu, axes=list(x=list(rug=FALSE), grid=TRUE)) plot(Effect("educ", mod, response="read")) detach(package:heplots) } # svyglm() example (adapting an example from the survey package) if (require(survey)){ data("api") dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(allEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } # component + residual plot examples Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) mod.prestige.1 <- lm(prestige ~ income + education, data=Prestige) plot(allEffects(mod.prestige.1, residuals=TRUE)) # standard C+R plots plot(allEffects(mod.prestige.1, residuals=TRUE, se=list(type="scheffe"))) # with Scheffe-type confidence bands mod.prestige.2 <- lm(prestige ~ type*(income + education), data=Prestige) plot(allEffects(mod.prestige.2, residuals=TRUE)) mod.prestige.3 <- lm(prestige ~ type + income*education, data=Prestige) plot(Effect(c("income", "education"), mod.prestige.3, residuals=TRUE), partial.residuals=list(span=1)) # artificial data set.seed(12345) x1 <- runif(500, -75, 100) x2 <- runif(500, -75, 100) y <- 10 + 5*x1 + 5*x2 + x1^2 + x2^2 + x1*x2 + rnorm(500, 0, 1e3) Data <- data.frame(y, x1, x2) mod.1 <- lm(y ~ poly(x1, x2, degree=2, raw=TRUE), data=Data) # raw=TRUE necessary for safe prediction mod.2 <- lm(y ~ x1*x2, data=Data) mod.3 <- lm(y ~ x1 + x2, data=Data) plot(Effect(c("x1", "x2"), mod.1, residuals=TRUE)) # correct model plot(Effect(c("x1", "x2"), mod.2, residuals=TRUE)) # wrong model plot(Effect(c("x1", "x2"), mod.3, residuals=TRUE)) # wrong model
mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))) eff.cowles as.data.frame(eff.cowles[[2]]) # the following are equivalent: eff.ne <- effect("neuroticism*extraversion", mod.cowles) Eff.ne <- Effect(c("neuroticism", "extraversion"), mod.cowles) all.equal(eff.ne$fit, Eff.ne$fit) plot(eff.cowles, 'sex', axes=list(y=list(lab="Prob(Volunteer)"))) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)"))) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) # a nested model: mod <- lm(log(prestige) ~ income:type + education, data=Prestige) plot(Effect(c("income", "type"), mod, transformation=list(link=log, inverse=exp)), axes=list(y=list(lab="prestige"))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) plot(Effect(c("Europe", "political.knowledge"), mod.beps, xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) plot(effect("Europe*political.knowledge", mod.beps, # equivalent xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) plot(Effect(c("country", "age"), mod.wvs), axes=list(y=list(style="stacked"))) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked"))) # equivalent plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs, se=list(type="scheffe"))) # Scheffe-type confidence envelopes } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres, xlevels=50) plot(eff.pres) plot(eff.pres[1], axes=list(x=list(income=list( transform=list(trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)) )))) # linear model with log-response and log-predictor # to illustrate transforming axes and setting tick labels mod.pres1 <- lm(log(prestige) ~ log(income) + poly(education, 3) + poly(women, 2), data=Prestige) # effect of the log-predictor eff.log <- Effect("income", mod.pres1) # effect of the log-predictor transformed to the arithmetic scale eff.trans <- Effect("income", mod.pres1, transformation=list(link=log, inverse=exp)) #variations: # y-axis: scale is log, tick labels are log # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.log) # y-axis: scale is log, tick labels are log # x-axis: scale is log, tick labels are arithmetic plot(eff.log, axes=list(x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(5000, 10000, 20000)), lab="income, log-scale")))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(lab="prestige"))) # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(type="response", lab="prestige"))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(lab="prestige, log-scale")), main="Both response and X in log-scale") # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list( income=list(transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(type="response", lab="prestige"))) if (require(nlme)){ # for gls() mod.hart <- gls(fconvict ~ mconvict + tfr + partic + degrees, data=Hartnagel, correlation=corARMA(p=2, q=0), method="ML") plot(allEffects(mod.hart)) detach(package:nlme) } if (require(lme4)){ data(cake, package="lme4") fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML = FALSE) plot(Effect(c("recipe", "temperature"), fm1)) plot(effect("recipe:temperature", fm1), axes=list(grid=TRUE)) # equivalent (plus grid) if (any(grepl("pbkrtest", search()))) detach(package:pbkrtest) detach(package:lme4) } if (require(nlme) && length(find.package("lme4", quiet=TRUE)) > 0){ data(cake, package="lme4") cake$rep <- with(cake, paste( as.character(recipe), as.character(replicate), sep="")) fm2 <- lme(angle ~ recipe * temperature, data=cake, random = ~ 1 | rep, method="ML") plot(Effect(c("recipe", "temperature"), fm2)) plot(effect("recipe:temperature", fm2), axes=list(grid=TRUE)) # equivalent (plus grid) } detach(package:nlme) if (require(poLCA)){ data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE nes2a <- poLCA(f2a,election,nclass=3,nrep=5) plot(Effect(c("PARTY", "AGE"), nes2a), axes=list(y=list(style="stacked"))) } # mlm example if (require(heplots)) { data(NLSY, package="heplots") mod <- lm(cbind(read,math) ~ income+educ, data=NLSY) eff.inc <- Effect("income", mod) plot(eff.inc) eff.edu <- Effect("educ", mod) plot(eff.edu, axes=list(x=list(rug=FALSE), grid=TRUE)) plot(Effect("educ", mod, response="read")) detach(package:heplots) } # svyglm() example (adapting an example from the survey package) if (require(survey)){ data("api") dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(allEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } # component + residual plot examples Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) mod.prestige.1 <- lm(prestige ~ income + education, data=Prestige) plot(allEffects(mod.prestige.1, residuals=TRUE)) # standard C+R plots plot(allEffects(mod.prestige.1, residuals=TRUE, se=list(type="scheffe"))) # with Scheffe-type confidence bands mod.prestige.2 <- lm(prestige ~ type*(income + education), data=Prestige) plot(allEffects(mod.prestige.2, residuals=TRUE)) mod.prestige.3 <- lm(prestige ~ type + income*education, data=Prestige) plot(Effect(c("income", "education"), mod.prestige.3, residuals=TRUE), partial.residuals=list(span=1)) # artificial data set.seed(12345) x1 <- runif(500, -75, 100) x2 <- runif(500, -75, 100) y <- 10 + 5*x1 + 5*x2 + x1^2 + x2^2 + x1*x2 + rnorm(500, 0, 1e3) Data <- data.frame(y, x1, x2) mod.1 <- lm(y ~ poly(x1, x2, degree=2, raw=TRUE), data=Data) # raw=TRUE necessary for safe prediction mod.2 <- lm(y ~ x1*x2, data=Data) mod.3 <- lm(y ~ x1 + x2, data=Data) plot(Effect(c("x1", "x2"), mod.1, residuals=TRUE)) # correct model plot(Effect(c("x1", "x2"), mod.2, residuals=TRUE)) # wrong model plot(Effect(c("x1", "x2"), mod.3, residuals=TRUE)) # wrong model
Open the official hex sticker for the effects package in your browser
effectsHexsticker()
effectsHexsticker()
Used for its side effect of openning the hex sticker for the effects package in your browser.
John Fox [email protected]
## Not run: effectsHexsticker() ## End(Not run)
## Not run: effectsHexsticker() ## End(Not run)
Set the lattice theme (see trellis.device
) appropriately for effect plots. This function is invoked
automatically when the effects package is loaded if the lattice package hasn't previously been loaded. A typical
call is lattice::trellis.par.set(effectsTheme())
.
effectsTheme(strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col)
effectsTheme(strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col)
strip.background |
colors for the background of conditioning strips at the top of each panel; the default uses shades of gray and makes allowance for up to three conditioning variables. |
strip.shingle |
when lines rather than numeric values are used to indicate the values of conditioning variables, the default sets the color of the lines to black. |
clip |
the default allows lines showing values of conditioning variables to extend slightly beyond the boundaries of the strips—making the lines more visible at the extremes. |
superpose.line |
the default sets the line width of the first (of seven) lines to 2. |
col |
an optional argument specifying the colors to use for lines and symbolst:
if |
a list suitable as an argument for trellis.par.set
; current values of modified parameters are
supplied as an attribute.
John Fox [email protected]
trellis.device
, trellis.par.set
## Not run: lattice::trellis.par.set(effectsTheme()) ## End(Not run)
## Not run: lattice::trellis.par.set(effectsTheme()) ## End(Not run)
plot
and Effect
MethodsPrior to verson 4.0-0 of the effects package, there were many (literally dozens) of
arguments to the plot
methods for "eff"
and "effpoly"
objects.
In version 4.0-0 of the package, we have consolidated these arguments into a much smaller
number of arguments (e.g., lines
, points
, axes
) that take lists of
specifications. We have similarly consolidated some of the arguments to Effect
methods
into the confint
and fixed.predictors
arguments.
For backwards compatibility, we have to the extent possible retained the older arguments. If specified, these legacy arguments take precedence over the newer list-style arguments
Here is the correspondence between the old and new arguments.
For plot
methods:
multiline=TRUE/FALSE
lines=list(multiline=TRUE/FALSE)
type=c("rescale", "link", "response")
For models with a link function, "link"
plots in linear predictor scale, "response"
plots in the response scale, and the default "rescale"
plots in linear predictor scale but labels tick-marks in response scale.
z.var=which.min(levels)
lines=list(z.var=which.min(levels))
relevant only when lines=list(multiline=TRUE)
colors={vector of colors}
lines=list(col={vector of colors})
lty={vector of line types}
lines=list(lty={vector of line types})
lwd={vector of line widths}
lines=list(lwd={vector of line widths})
use.splines=TRUE/FALSE
lines=list(splines=TRUE/FALSE)
cex={number}
points=list(cex={number})
rug=TRUE/FALSE
axes=list(x=list(rug=TRUE/FALSE)
xlab={"axis title"}
axes=list(x=list(lab={"axis title"}))
xlim={c(min, max)}
axes=list(x=list(lim={c(min, max)}))
rotx={degrees}
axes=list(x=list(rot={degrees}))
ticks.x=list({tick specifications})
axes=list(x=list(ticks=list({tick specifications})))
transform.x=list(link={function}, inverse={function})
axes=list(x=list(transform=list({lists of transformations by predictors})))
ylab={"axis title"}
axes=list(y=list(lab={"axis title"}))
ylim={c(min, max)}
axes=list(y=list(lim={c(min, max)}))
roty={degrees}
axes=list(y=list(rot={degrees}))
ticks=list({tick specifications})
axes=list(y=list(ticks=list({tick specifications})))
alternating=TRUE/FALSE
axes=list(alternating=TRUE/FALSE)
grid=TRUE/FALSE
axes=list(grid=TRUE/FALSE)
ci.style="bands"/"lines"/"bars"/"none"
confint=list(style="bands"/"lines"/"bars"/"none"
)
band.transparency={number}
confint=list(alpha={number})
band.colors={vector of colors}
confint=list(col={vector of colors})
residuals.color={color}
partial.residuals=list(col={color})
residuals.pch={plotting character}
partial.residuals=list(pch={plotting character})
residuals.cex={number}
partial.residuals=list(cex={number})
smooth.residuals=TRUE/FALSE
partial.residuals=list(smooth=TRUE/FALSE)
residuals.smooth.color={color}
partial.residuals=list(smooth.col={color})
span={number}
partial.residuals=list(span={number})
show.fitted=TRUE/FALSE
partial.residuals=list(fitted=TRUE/FALSE)
factor.names=TRUE/FALSE
lattice=list(strip=list(factor.names=TRUE/FALSE))
show.strip.values=TRUE/FALSE
lattice=list(strip=list(values=TRUE/FALSE))
layout={lattice layout}
lattice=list(layout={lattice layout})
key.args={lattice key args}
lattice=list(key.args={lattice key args})
style="lines"/"stacked"
for plot.effpoly
, axes=list(y=list(style="lines"/"stacked"))
rescale.axis=TRUE/FALSE
type="rescale"/"response"/"link"
For Effect
methods:
confint=TRUE/FALSE
or a listmay be substituted for the se
argument.
confidence.level={number}
se=list(level={number})
given.values={named vector}
fixed.predictors=list(given.values={named vector})
typical={function}
fixed.predictors=list(typical={function})
offset={function}
fixed.predictors=list(offset={function})
partial.residuals=TRUE/FALSE
residuals=TRUE/FALSE
transformation
This argument to Effect
is not needed to compute effects. It can now be set directly with the plot
method with the argument axes = list(y = list(transformation=specification))
.
John Fox [email protected]
Effect
, plot.eff
, plot.effpoly
plot
methods for predictoreff
, predictorefflist
, eff
, efflist
and effpoly
objects created by calls other methods in the effects
package. The plot arguments were substantially changed in mid-2017. For more details and many examples, see the Predictor Effects Graphics Gallery vignette.
## S3 method for class 'eff' plot(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) ## S3 method for class 'efflist' plot(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...) ## S3 method for class 'predictoreff' plot(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...) ## S3 method for class 'predictorefflist' plot(x, selection, rows, cols, ask = FALSE, graphics = TRUE, lattice, ...) ## S3 method for class 'effpoly' plot(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines) ## S3 method for class 'mlm.efflist' plot(x, ...)
## S3 method for class 'eff' plot(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) ## S3 method for class 'efflist' plot(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...) ## S3 method for class 'predictoreff' plot(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...) ## S3 method for class 'predictorefflist' plot(x, selection, rows, cols, ask = FALSE, graphics = TRUE, lattice, ...) ## S3 method for class 'effpoly' plot(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines) ## S3 method for class 'mlm.efflist' plot(x, ...)
x |
an object of class |
x.var |
the index (number) or quoted name of the covariate or factor to place on the horizontal axis of each panel of the effect plot. The default is the predictor with the largest number of levels or values. This argument is ignored with |
main |
the title for the plot, printed at the top; the default title is constructed from the name of the effect. |
symbols |
|
lines |
|
axes |
an optional list of specifications for the x and y axes; if not given, axis properties take generally reasonable default values. See Details for more information. |
confint |
an optional list of specifications for plotting confidence regions and intervals; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information. |
partial.residuals |
an optional list of specifications for plotting partial residuals for linear and generalized linear models; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information, along with the Effect Displays with Partial Residuals vignette. |
id |
an optional list of specifications for identifying points when partial residuals are plotted; if not specified, no points are labelled. See Detailed Argument Descriptions under Details for more information. |
lattice |
an optional list of specifications for various lattice properties, such as legend placement; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information. |
selection |
the optional index (number) or quoted name of the effect in an efflist object to be plotted; if not supplied, a menu of high-order terms is presented or all effects are plotted. |
rows , cols
|
Number of rows and columns in the “meta-array” of plots produced for an |
ask |
if |
graphics |
if |
... |
arguments to be passed down. For |
multiline , z.var , rug , xlab , ylab , colors , cex , lty , lwd , ylim , xlim , factor.names , ci.style , band.transparency , band.colors , ticks , alternating , rotx , roty , grid , layout , rescale.axis , transform.x , ticks.x , show.strip.values , key.args , use.splines , type , residuals.color , residuals.pch , residuals.cex , smooth.residuals , residuals.smooth.color , show.fitted , span , style
|
legacy arguments retained for backwards compatibility; if specified, these will take precedence over the newer list-style arguments described above. See |
Effects plots and predictor effects plots are produced by these methods. The plots are highly customizable using the optional arguments described here. For example, effects in a GLM are plotted on the scale of the linear predictor, but the vertical axis is labelled on the response scale. This preserves the linear structure of the model while permitting interpretation on what is usually a more familiar scale. This approach may also be used with linear models, for example to display effects on the scale of the response even if the data are analyzed on a transformed scale, such as log or square-root. See the axes
argument details below to change the scale to response scale, or to linear predictor scale with tick marks labeled in response scale.
When a factor is on the x-axis, the plot
method for eff
objects connects the points representing the effect by line segments, creating a response “profile.” If you wish to suppress these lines, add lty=0
to the lines
argument to the call to plot
(see below and the examples).
In a polytomous multinomial or proportional-odds logit model, by default effects are plotted on the probability scale; they may alternatively be plotted on the scale of the individual-level logits.
All of the arguments to plot objects created by Effect
or allEffects
can also be used with objects created by predictorEffect
or predictorEffects
.
Detailed Argument Descriptions
For more information about these arguments and many examples, see the Predictor Effects Graphics Gallery vignette.
Maximizing the flexibility of these plot commands requires inclusion of a myriad of options. In an attempt to simplify the use of these options, they have been organized into just a few arguments that each accept a list of specifications as an argument. In a few cases the named entries in the list are themselves lists.
Each of the following arguments takes an optional list of specifications; any specification absent from the list
assumes its default value. Some of the list elements are themselves lists, so in complex cases, the argument can take
the form of nested lists. All of these arguments can also be used on objects created with predictorEffects
.
symbols
TRUE
, FALSE
, or a list of options that controls the plotting symbols and their sizes for use with factors;
if FALSE
symbols are suppressed; if TRUE
default values are used:
pch
ploting symbols, a vector of plotting characters, with the default taken from trellis.par.get("superpose.symbol")$pch
, typically a vector of 1s (circles).
cex
plotting character sizes, a vector of values, with the default taken from trellis.par.get("superpose.symbol")$cex
, typically a vector of 0.8s.
lines
TRUE
, FALSE
, or a list that controls the characteristics of lines drawn on a plot, and also whether or not multiple lines should be drawn in the same panel in the plot; if FALSE
lines are suppressed; if TRUE
default values are used:
multiline
display a multiline plot in each panel; the default is TRUE
if there are no standard errors
in the "eff"
object, FALSE
otherwise. For an "effpoly"
object multline=TRUE
causes all of the response
levels to be shown in the same panel rather than in separate panels.
for linear, generalized linear or mixed models, the index (number) or quoted name of the covariate or factor for which individual lines are to be drawn in each panel of the effect plot. The default is the predictor with the smallest number of levels or values. This argument is only used for multipline plots.
lty
vector of line types, with the default taken from trellis.par.get("superpose.line")$lty
, typically a vector of 1s (solid lines).
lwd
vector of line widths, with the default taken from trellis.par.get("superpose.line")$lwd
, typically a vector with 2 in the first position followed by 1s.
col
a vector of line colors, with the default taken from from trellis.par.get("superpose.line")$col
, used both for lines and
for areas in stacked area plots for "effpoly"
objects; in the latter case, the default colors for an ordered response are instead generated by
sequential_hcl
in the colorspace package.
splines
use splines to smooth plotted effect lines; the default is TRUE
.
axes
a list with elements x
, y
, alternating
, and grid
that control axis limits, ticks, and labels.
The x
and y
elements may themselves be lists.
The x
entry is a list with elements named for predictors, with each predictor element itself a list with the following elements:
lab
axis label, defaults to the name of the predictor; may either
be a text string or a list with the text label (optionally named label
)
as its first element and the named element cex
as its second element.
lim
a two-element vector giving the axis limits, with the default determined from the data.
ticks
a list with either element at
, a vector specifying locations for the ticks marks, or n
, the number
of tick marks.
transform
transformations to be applied to the horizontal axis of a numeric predictor,
in the form of a list of two functions, with
element names trans
and inverse
. The
trans
function is applied to the values of the predictor, and inverse
is used for computing
proper axis tick labels. The default is not to transform the predictor axis.
Two additional elements may appear in the x
list, and apply to all predictors:
rotate
angle in degrees to rotate tick labels; the default is 0.
rug
display a rug plot showing the marginal distribution of a numeric predictor; the default is TRUE
.
The y
list contains lab
, lim
, ticks
, and rotate
elements
(similar to those specified for individual predictors in the x
list), along with the additional type
, transform
, and style
elements:
type
for plotting linear or generalized linear models, "rescale"
(the default) plots the vertical
axis on the link scale (e.g., the logit scale for a logit model) but labels the axis on the response
scale (e.g., the probability scale for a logit model);
"response"
plots and labels the vertical axis on the scale of the response (e.g., the probability scale for a logit model); and
"link"
plots and labels the vertical axis on the scale of the link (e.g., the logit scale for a logit model).
For polytomous logit models, this element is either "probability"
or "logit"
, with the former as the default.
transform
primarily for linear or linear mixed models, this argument is used to apply an arbitrary transformation to the vertical axis. For example, if fitting a linear model with response log(y)
, then setting transform=exp
would plot exp(log(y)) = y
on the vertical axis. If the response were 1/y
, then use transform=function(yt) 1/yt
, since the reciprocal is its own inverse. The transform
argument can also be a list of two functions. For example with a response log(y)
, the specification transform=list(trans=log, inverse=log), type="rescale"
will plot in log-scale, but will label tick marks in arithmetic scale; see the example below. The specification transform=list(trans=log, inverse=exp), type="response"
is equivalent to transform=exp
. When type="response"
the lab
argument will geneally be used to get a label for the axis that matches the untransformed response. If this argument is used with a generalized linear model or another model with a non-identity link function, the function is applied to the linear predictor, and will probably not be of interest.
style
for polytomous logit models, this element can take on the value "lines"
(the default) or "stacked"
for line plots or stacked-area plots, respectively.
Other elements:
alternating
if TRUE
(the default), the tick labels alternate by panels in
multi-panel displays from left to right and top to bottom; if FALSE
, tick labels
appear at the bottom and on the left.
grid
if TRUE
(the default is FALSE
), add grid lines to the plot.
confint
specifications to add/remove confidence intervals or regions from a plot, and to set the nominal confidence level.
style
one of "auto"
, "bars"
, "lines"
, "bands"
, and "none"
; the default
is "bars"
for factors, "bands"
for numeric predictors, and "none"
for multiline plots; "auto"
also produces "bars"
for factors
and "bands"
for numeric predictors, even in multiline plots.
alpha
transparency of confidence bands; the default is 0.15.
col
colors; the default is taken from the line colors.
partial.residuals
specifications concerning the addition of partial residuals to the plot.
plot
display the partial residuals;
the default is TRUE
if residuals are present in the "eff"
object, FALSE
otherwise.
fitted
show fitted values as well as residuals; the default is FALSE
.
col
color for partial residuals; the default is the second line color.
pch
plotting symbols for partial residuals; the default is 1, a circle.
cex
size of symbols for partial residuals; the default is 1.
smooth
draw a loess smooth of the partial residuals; the default is TRUE
.
span
span for the loess smooth; the default is 2/3.
smooth.col
color for the loess smooth; the default is the second line color.
lty
line type for the loess smooth; the default is the first line type, normally 1 (a solid line).
lwd
line width for the loess smooth; the default is the first line width, normally 2.
id
specifications for optional point identification when partial residuals are plotted.
n
number of points to identify; default is 2
if id=TRUE
and 0
if id=FALSE
. Points are selected based on the Mahalanobis
distances of the pairs of x-values and partial residuals from their centroid.
col
color for the point labels; default is the same as the color of the partial residuals.
cex
relative size of text for point labels; default is 0.75
.
labels
vector of point labels; the default is the names of the residual vector, which is typically the row names of the data frame to which the model is fit.
lattice
the plots are drawn with the lattice package, generally by the xyplot
function. These specifications are passed as arguments to the functions that actually draw the plots.
layout
the layout
argument to the lattice function xyplot
(or, in some cases densityplot
), which
is used to draw the effect display; if not specified, the plot will be formatted so that
it appears on a single page.
key.args
a key, or legend, is added to the plot if multiline=TRUE
. This argument is a list with components that determine the the placement and other characteristics of the key. The default if not set by the user is key.args = list(space="top", columns=2, border=FALSE, fontfamily="serif", cex.title=.80, cex=0.75)
. If there are more than 6 groups in the plot, columns
is set to 3. For stacked-area plots, the default is a one-column key. In addition to the arguments shown explicitly below, any of the arguments listed in the xyplot
documentation in the key
section can be used.
space
determines the placement of the key outside the plotting area, with default space="above"
for above the plot and below its title. Setting space="right"
uses space to the right of the plot for the key.
x, y, corner
used to put the key on the graph itself. For example, x=.05, y=.95, corner=c(0,1)
will locate the upper-left corner of the key at (.05, .95), thinking of the graph as a unit square.
columns
number of columns in the key. If space="top"
, columns should be 2, 3 or 4; if space="right"
, set columns=1
.
border
if TRUE
draw a border around the key; omit the border if FALSE
.
fontfamily
the default is "sans"
for the sans-serif font used in the rest of the plot; the alternative is "serif"
for a serif font.
cex, cex.title
the default relative size of the font for labels and the title, respectively. To save space set these to be smaller than 1.
strip
a list with three elements: factor.names
, which if TRUE
, the default, shows conditioning
variable names in the panel headers; values
, which if TRUE
, the default unless partial residuals are plotted,
displays conditioning variable values in the panel headers, and cex
, the relative size of the text displayed in the strip.
array
a list with elements row
, col
, nrow
, ncol
, and more
,
used to graph an effect as part of an array of plots; row
, col
, nrow
, and ncol
are used to compose
the split
argument and more
the more
argument to print.trellis
.
The array
argument is automatically set by plot.efflist
and will be ignored if used with that function.
The summary
method for "eff"
objects returns a "summary.eff"
object with the following components
(those pertaining to confidence limits need not be present):
header |
a character string to label the effect. |
effect |
an array containing the estimated effect. |
lower.header |
a character string to label the lower confidence limits. |
lower |
an array containing the lower confidence limits. |
upper.header |
a character string to label the upper confidence limits. |
upper |
an array containing the upper confidence limits. |
The plot
method for "eff"
objects returns a "plot.eff"
object (an enhanced "trellis"
object); the provided
print
method plots the object.
The [
method for "efflist"
objects is used to subset an "efflist"
object and returns an object of the same class.
John Fox [email protected] and Jangman Hong.
LegacyArguments
, effect
, allEffects
, effectsTheme
,
xyplot
, densityplot
, print.trellis
, loess
,
sequential_hcl
,
and the Predictor Effects Graphics Gallery and Effect Displays with Partial Residuals vignettes.
# also see examples in ?effect # plot predictorEffects mod <- lm(prestige ~ education + log(income)*type + women, Prestige) plot(predictorEffects(mod, ~ income), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ income), lines=list(multiline=TRUE), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ type), lines=list(multiline=TRUE), axes=list(grid=TRUE), confint=list(style="bars")) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))) eff.cowles as.data.frame(eff.cowles[[2]]) # neuroticism*extraversion interaction plot(eff.cowles, 'sex', axes=list(grid=TRUE, y=list(lab="Prob(Volunteer)"), x=list(rotate=90)), lines=list(lty=0)) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) # change color of the confidence bands to 'black' with .15 transparency plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9)))), confint=list(col="red", alpha=.3)) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1)))) # use probability scale in place of logit scale, all lines are black. plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE, lty=1:8, col="black"), axes=list(y=list(type="response", lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))), confint=list(style="bands")) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE), axes=list(y=list(type="response")), confint=list(style="bands"), lattice=list(key.args = list(x=0.75, y=0.75, corner=c(0, 0)))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), axes=list(y=list(style="stacked"), x=list(rug=FALSE), grid=TRUE), lines=list(col=c("blue", "red", "orange"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) plot(effect("country*poly(age, 3)", mod.wvs), lines=list(multiline=TRUE)) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked")), lines=list(col=c("gray75", "gray50", "gray25"))) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres) plot(eff.pres) plot(eff.pres[1:2]) plot(eff.pres[1], axes=list(x=list(income=list(transform=list( trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)))))) mod <- lm(log(prestige) ~ income:type + education, data=Prestige) p1 <- predictorEffects(mod, ~ income) # log-scale for response plot(p1, lines=list(multiline=TRUE)) # log-scale, with arithmetic tick marks plot(p1, lines=list(multiline=TRUE), axes=list(y=list(transform=list(trans=log, inverse = exp), lab="prestige", type="rescale"))) # arithmetic scale and tick marks, with other arguments plot(p1, lines=list(multiline=TRUE), grid=TRUE, lattice=list(key.args=list(space="right", border=TRUE)), axes=list(y=list(transform=exp, lab="prestige")))
# also see examples in ?effect # plot predictorEffects mod <- lm(prestige ~ education + log(income)*type + women, Prestige) plot(predictorEffects(mod, ~ income), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ income), lines=list(multiline=TRUE), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ type), lines=list(multiline=TRUE), axes=list(grid=TRUE), confint=list(style="bars")) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))) eff.cowles as.data.frame(eff.cowles[[2]]) # neuroticism*extraversion interaction plot(eff.cowles, 'sex', axes=list(grid=TRUE, y=list(lab="Prob(Volunteer)"), x=list(rotate=90)), lines=list(lty=0)) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) # change color of the confidence bands to 'black' with .15 transparency plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9)))), confint=list(col="red", alpha=.3)) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1)))) # use probability scale in place of logit scale, all lines are black. plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE, lty=1:8, col="black"), axes=list(y=list(type="response", lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))), confint=list(style="bands")) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE), axes=list(y=list(type="response")), confint=list(style="bands"), lattice=list(key.args = list(x=0.75, y=0.75, corner=c(0, 0)))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), axes=list(y=list(style="stacked"), x=list(rug=FALSE), grid=TRUE), lines=list(col=c("blue", "red", "orange"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) plot(effect("country*poly(age, 3)", mod.wvs), lines=list(multiline=TRUE)) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked")), lines=list(col=c("gray75", "gray50", "gray25"))) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres) plot(eff.pres) plot(eff.pres[1:2]) plot(eff.pres[1], axes=list(x=list(income=list(transform=list( trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)))))) mod <- lm(log(prestige) ~ income:type + education, data=Prestige) p1 <- predictorEffects(mod, ~ income) # log-scale for response plot(p1, lines=list(multiline=TRUE)) # log-scale, with arithmetic tick marks plot(p1, lines=list(multiline=TRUE), axes=list(y=list(transform=list(trans=log, inverse = exp), lab="prestige", type="rescale"))) # arithmetic scale and tick marks, with other arguments plot(p1, lines=list(multiline=TRUE), grid=TRUE, lattice=list(key.args=list(space="right", border=TRUE)), axes=list(y=list(transform=exp, lab="prestige")))
Alternatives to the Effect
and allEffects
functions that use a different paradigm for conditioning in an effect display. The user specifies one predictor, either numeric or a factor (where character and logical variables are treated as factors), for the horizontal axis of a plot, and the function determines the appropriate plot to display (which is drawn by plot
). See the vignette Predictor Effects Graphics Gallery for details and examples.
predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## S3 method for class 'poLCA' predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## S3 method for class 'svyglm' predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## Default S3 method: predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ..., sources) predictorEffects(mod, predictors, focal.levels=50, xlevels=5, ...) ## S3 method for class 'poLCA' predictorEffects(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) ## Default S3 method: predictorEffects(mod, predictors = ~ ., focal.levels=50, xlevels=5, ..., sources)
predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## S3 method for class 'poLCA' predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## S3 method for class 'svyglm' predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) ## Default S3 method: predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ..., sources) predictorEffects(mod, predictors, focal.levels=50, xlevels=5, ...) ## S3 method for class 'poLCA' predictorEffects(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) ## Default S3 method: predictorEffects(mod, predictors = ~ ., focal.levels=50, xlevels=5, ..., sources)
mod |
A model object. Supported models include all those described on the help page for |
predictor |
quoted name of the focal predictor. |
predictors |
If the default, |
focal.levels |
for For |
xlevels |
this argument is used to set the levels of conditioning predictors; it may either be a single number specifying the number of evenly-spaced values (the default is 5) to which each conditioning predictor is to be set, or it may be a list with elements named for the predictors giving the number of values or a vector of values to which each conditioning predictor is to be set, as explained in the help for If the focal predictor is included in the The default behavior of The |
... |
Additional arguments passed to |
sources |
Provides a mechanism for applying |
Effect plots view a fitted regression function E(Y|X) in (sequences of) two-dimensional plots using conditioning and slicing. The functions described here use a different method of determining the conditioning and slicing than allEffects
uses. The predictor effect of a focal predictor, say x1
, is the usual effect for the generalized interaction of x1
with all the other predictors in a model. When a predictor effect object is plotted, the focal predictor is by default plotted on the horizontal axis.
For example, in the model mod
with formula y ~ x1 + x2 + x3
, the predictor effect p1 <- predictorEffects(mod, ~ x1)
is essentially equilavent to p2 <- Effect("x1", mod)
. When plotted, these objects may produce different graphs because plot(p1)
will always put x1
on the horizontal axis, while plot(p2)
uses a rule to determine the horizontal axis based on the characteristics of all the predictors, e.g., preferring numeric predictors over factors.
If mod
has the formula y ~ x1 + x2 + x3 + x1:x2
, then p1 <- predictorEffects(mod, ~ x1)
is essentially equivalent to p2 <- Effect(c("x1", "x2"), mod)
. As in the last example, the plotted versions of these objects may differ because of different rules used to determine the predictor on the horizontal axis.
If mod
has the formula y ~ x1 + x2 + x3 + x1:x2 + x1:x3
, then p1 <- predictorEffects(mod, ~ x1)
is essentially equilavent to p2 <- Effect(c("x1", "x2", "x3"), mod)
. Again, the plotted versions of these objects may differ because of the rules used to determine the horizontal axis.
predictorEffect
returns an object of class c("predictoreff", "eff")
. The components of the object are described in the help for Effect
; predictorEffects
returns an object of class "predictorefflist"
, which is a list whose elements are of class c("predictoreff", "eff")
.
S. Weisberg [email protected] and J. Fox
See Effect
.
Effect
, plot.predictoreff
, the Predictor Effects Graphics Gallery vignette, and the Effect Displays with Partial Residuals vignette.
mod <- lm(prestige ~ type*(education + income) + women, Prestige) plot(predictorEffect("income", mod)) plot(predictorEffects(mod, ~ education + income + women)) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) plot(predictorEffects(mod.cowles, xlevels=4)) plot(predictorEffect("neuroticism", mod.cowles, xlevels=list(extraversion=seq(5, 20, by=5))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(lab="Probability of Vounteering")), lines=list(multiline=TRUE), type="response") predictorEffects(mod.cowles, focal.levels=4, xlevels=4) # svyglm() example (adapting an example from the survey package) if (require(survey)){ data(api) dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(predictorEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) }
mod <- lm(prestige ~ type*(education + income) + women, Prestige) plot(predictorEffect("income", mod)) plot(predictorEffects(mod, ~ education + income + women)) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) plot(predictorEffects(mod.cowles, xlevels=4)) plot(predictorEffect("neuroticism", mod.cowles, xlevels=list(extraversion=seq(5, 20, by=5))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(lab="Probability of Vounteering")), lines=list(multiline=TRUE), type="response") predictorEffects(mod.cowles, focal.levels=4, xlevels=4) # svyglm() example (adapting an example from the survey package) if (require(survey)){ data(api) dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(predictorEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) }
summary
, print
, and as.data.frame
methods for objects created using the effects package.
## S3 method for class 'eff' print(x, type=c("response", "link"), ...) ## S3 method for class 'effpoly' print(x, type=c("probability", "logits"), ...) ## S3 method for class 'efflatent' print(x, ...) ## S3 method for class 'efflist' print(x, ...) ## S3 method for class 'mlm.efflist' print(x, ...) ## S3 method for class 'summary.eff' print(x, ...) ## S3 method for class 'eff' summary(object, type=c("response", "link"), ...) ## S3 method for class 'effpoly' summary(object, type=c("probability", "logits"), ...) ## S3 method for class 'efflatent' summary(object, ...) ## S3 method for class 'efflist' summary(object, ...) ## S3 method for class 'mlm.efflist' summary(object, ...) ## S3 method for class 'eff' as.data.frame(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...) ## S3 method for class 'efflist' as.data.frame(x, row.names=NULL, optional=TRUE, type, ...) ## S3 method for class 'effpoly' as.data.frame(x, row.names=NULL, optional=TRUE, ...) ## S3 method for class 'efflatent' as.data.frame(x, row.names=NULL, optional=TRUE, ...) ## S3 method for class 'eff' vcov(object, ...)
## S3 method for class 'eff' print(x, type=c("response", "link"), ...) ## S3 method for class 'effpoly' print(x, type=c("probability", "logits"), ...) ## S3 method for class 'efflatent' print(x, ...) ## S3 method for class 'efflist' print(x, ...) ## S3 method for class 'mlm.efflist' print(x, ...) ## S3 method for class 'summary.eff' print(x, ...) ## S3 method for class 'eff' summary(object, type=c("response", "link"), ...) ## S3 method for class 'effpoly' summary(object, type=c("probability", "logits"), ...) ## S3 method for class 'efflatent' summary(object, ...) ## S3 method for class 'efflist' summary(object, ...) ## S3 method for class 'mlm.efflist' summary(object, ...) ## S3 method for class 'eff' as.data.frame(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...) ## S3 method for class 'efflist' as.data.frame(x, row.names=NULL, optional=TRUE, type, ...) ## S3 method for class 'effpoly' as.data.frame(x, row.names=NULL, optional=TRUE, ...) ## S3 method for class 'efflatent' as.data.frame(x, row.names=NULL, optional=TRUE, ...) ## S3 method for class 'eff' vcov(object, ...)
x , object
|
an object consisting of fitted values and other information needed to draw effects plots that is produced by functions in the |
type |
fitted values are by default printed by these functions in the |
row.names , optional
|
arguments to |
... |
other arguments passed on |
The print
methods return the fitted values in tables. The summary
methods return the fitted values and 95 percent condifence intervals, also in tables. The as.data.frame
method returns fitted values, standard errors, and 95 percent confidence intervals as a data frame, or as a list of data frames for the efflist
method. The vcov
method returns the covariance matrix of the fitted values.
John Fox [email protected] and Jangman Hong.
mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- predictorEffects(mod.cowles) print(eff.cowles) print(eff.cowles[["neuroticism"]], type="link") summary(eff.cowles[["neuroticism"]], type="link") as.data.frame(eff.cowles) # covariance matrix of fitted values in linear predictor scale vcov(eff.cowles[[1]])
mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- predictorEffects(mod.cowles) print(eff.cowles) print(eff.cowles[["neuroticism"]], type="link") summary(eff.cowles[["neuroticism"]], type="link") as.data.frame(eff.cowles) # covariance matrix of fitted values in linear predictor scale vcov(eff.cowles[[1]])